Antithetic Sampling for Sequential Monte Carlo Methods with Application to State Space Models
نویسنده
چکیده
Abstract. In this paper we cast the idea of antithetic sampling, widely used in standard Monte Carlo simulation, into the framework of sequential Monte Carlo methods. A version of the standard auxiliary particle filter (Pitt and Shephard, 1999) is proposed where the particles are mutated blockwise in such a way that all particles within each block are, firstly, offspring of a common ancestor and, secondly, negatively correlated conditionally on this ancestor. By deriving and examining the weak limit of a central limit theorem describing the convergence of the algorithm, we conclude that the asymptotic variance of the produced Monte Carlo estimates can be straightforwardly decreased by means of antithetic techniques when the particle filter is close to fully adapted, which involves approximation of the socalled optimal proposal kernel. As an illustration, we apply the method to optimal filtering in state space models.
منابع مشابه
Multi-process Parallel Antithetic Coupling For Backward and Forward Markov Chain Monte Carlo
Antithetic coupling is a general stratification strategy for reducing Monte Carlo variance without increasing the simulation size. The use of the antithetic principle in the Monte Carlo literature typically employs two strata via antithetic quantile coupling. We demonstrate here that further stratification, obtained by using k > 2 (e.g., k = 3 − 10) antithetically coupled variates, can offer su...
متن کاملMultiprocess Parallel Antithetic Coupling for Backward and Forward
Antithetic coupling is a general stratification strategy for reducing Monte Carlo variance without increasing the simulation size. The use of the antithetic principle in the Monte Carlo literature typically employs two strata via antithetic quantile coupling. We demonstrate here that further stratification, obtained by using k > 2 (e.g., k = 3–10) antithetically coupled variates, can offer subs...
متن کاملFixed-Lag Smoothing using Sequential Importance Sampling1
In this paper we present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) for state space models with unknown parameters. Sequential processing using Monte Carlo simulation is an area of growing interest for many engineering and statistical applications where data arrive point by point rather than in a batch. The methods presented here are related to the particle filte...
متن کاملTECHNIQUES for EFFICIENT MONTE CARLO SIMULATION
Many Monte Carlo simulation problems lend themselves readily to the application of variance reduction techniques. These techniques can result in great improvements in simulation efficiency. This document describes the basic concepts of variance reduction (Part I), and a methodology for application of variance reduction techniques is presented in Part II. Appendices include the basic analytical ...
متن کاملAn Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the obse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008